Improvement of SUSAN Image Filtering Method for PCB Quality Inspection
PDF
DOI

Keywords

Industry 4.0
Сomputer Vision Systems
PCB
Filtration Methods
SUSAN

How to Cite

Improvement of SUSAN Image Filtering Method for PCB Quality Inspection. (2024). Journal of Universal Science Research, 2(7), 106-116. https://universalpublishings.com/~niverta1/index.php/jusr/article/view/6779

Abstract

This paper presents an improvement to the SUSAN image filtering method to improve the quality inspection accuracy of printed circuit boards (PCBs). The problems of traditional filtering methods are considered and improvements are proposed aimed at more effectively removing noise and increasing the reliability of defect detection. The experiments confirm that the modernized SUSAN method provides higher image quality, which is critical for computer vision systems in Industry 4.0. Application of the proposed approach helps reduce defect rates and optimize production processes, improving the overall productivity and reliability of PCB quality control

PDF
DOI

References

Lyashenko. V., & et al. (2023). Automated Monitoring and Visualization System in Production. Int. Res. J. Multidiscip. Technovation, 5(6), 09-18.

Nevliudov, I., & et al. (2020). Monitoring System Development for Equipment s

Maksymova, S., & et al. (2024). The Monitoring System Architecture Development. Journal of Universal Science Research 2 (1), 69-79.

Nevliudov, I., & et al. (2020). Development of an Architecturallogical Model to Automate the Management of the Process of Creating Complex Cyberphysical Industrial Systems. Восточно-Европейский журнал передовых технологий, 4(3-106), 44-52.

Bondariev, A., & et al. (2023). Automated Monitoring System Development for Equipment Modernization. Journal of Universal Science Research, 1(11), 6-16.

Невлюдов, І. Ш., & et al. (2023). Моделі та методи кіберфізичних виробничих систем в концепції Industry 4.0. Oktan Print, Prague, 321.

Євсєєв, В., & et al. (2020). Технологія процесу керування розробкою кіберфізичних виробничих систем, ВЧЕНІ ЗАПИСКИ, 2020.

Nevliudov, I., Yevsieiev, V., Lyashenko, V., & Ahmad, M. A. (2021). GUI Elements and Windows Form Formalization Parameters and Events Method to Automate the Process of Additive Cyber-Design CPPS Development. Advances in Dynamical Systems and Applications, 16(2), 441-455.

Ahmad, M. A., Sinelnikova, T., Lyashenko, V., & Mustafa, S. K. (2020). Features of the construction and control of the navigation system of a mobile robot. International Journal of Emerging Trends in Engineering Research, 8(4), 1445-1449.

Al-Sharo Y., & et al. (2023). A Robo-hand prototype design grippingdevice within the framework of sustainable development. Indian Journal of Engineering, 20, e37ije1673.

Al-Sharo, Y. M., Abu-Jassar, A. T., Sotnik, S., & Lyashenko, V. (2023). Generalized Procedure for Determining the Collision-Free Trajectory for a Robotic Arm. Tikrit Journal of Engineering Sciences, 30(2), 142-151.

Lyashenko, V., Laariedh, F., Ayaz, A. M., & Sotnik, S. (2021). Recognition of Voice Commands Based on Neural Network. TEM Journal: Technology, Education, Management, Informatics, 10(2), 583-591.

Lyashenko, V., & Sotnik, S. (2022). Overview of Innovative Walking Robots. International Journal of Academic Engineering Research (IJAER), 6(4), 3-7.

Yevsieiev, V., & et al. (2024). Object Recognition and Tracking Method in the Mobile Robot’s Workspace in Real Time. Technical Science Research In Uzbekistan, 2(2), 115-124.

Nikitin, V., & et al. (2023). Traffic Signs Recognition System Development. Multidisciplinary Journal of Science and Technology, 3(3), 235-242.

Yevsieiev, V., & et al. (2024). The Sobel algorithm implementation for detection an object contour in the mobile robot’s workspace in real time. Technical Science Research in Uzbekistan, 2(3). 23-33.

Lyubchenko, V., Matarneh, R., Kobylin, O., & Lyashenko, V. (2016). Digital image processing techniques for detection and diagnosis of fish diseases. International Journal of Advanced Research in Computer Science and Software Engineering, 6(7), 79-83.

Lyashenko, V., Matarneh, R., & Kobylin, O. (2016). Contrast modification as a tool to study the structure of blood components. Journal of Environmental Science, Computer Science and Engineering & Technology, 5(3), 150-160.

Al-Sharo, Y. M., Abu-Jassar, A. T., Sotnik, S., & Lyashenko, V. (2021). Neural networks as a tool for pattern recognition of fasteners. International Journal of Engineering Trends and Technology, 69(10), 151-160.

Гиренко, А. В., Ляшенко, В. В., Машталир, В. П., & Путятин, Е. П. (1996). Методы корреляционного обнаружения объектов. Харьков: АО “БизнесИнформ, 112.

Sotnik, S., Mustafa, S. K., Ahmad, M. A., Lyashenko, V., & Zeleniy, O. (2020). Some features of route planning as the basis in a mobile robot. International Journal of Emerging Trends in Engineering Research, 8(5), 2074-2079.

Lyashenko, V. V., Babker, A. M. A. A., & Kobylin, O. A. (2016). The methodology of wavelet analysis as a tool for cytology preparations image processing. Cukurova Medical Journal, 41(3), 453-463.

Kobylin, O., & Lyashenko, V. (2014). Comparison of standard image edge detection techniques and of method based on wavelet transform. International Journal, 2(8), 572-580.

Orobinskyi, P., Deineko, Z., & Lyashenko, V. (2020). Comparative Characteristics of Filtration Methods in the Processing of Medical Images. American Journal of Engineering Research, 9(4), 20-25.

Mousavi, S. M. H., Lyashenko, V., & Prasath, S. (2019). Analysis of a robust edge detection system in different color spaces using color and depth images. Компьютерная оптика, 43(4), 632-646.

Tahseen A. J. A., & et al.. (2023). Binarization Methods in Multimedia Systems when Recognizing License Plates of Cars. International Journal of Academic Engineering Research (IJAER), 7(2), 1-9.

Lyashenko, V., Kobylin, O., & Selevko, O. (2020). Wavelet analysis and contrast modification in the study of cell structures images. International Journal of Advanced Trends in Computer Science and Engineering, 9(4), 4701-4706.

Lyashenko, V. V., Babker, A. M., & Lyubchenko, V. A. (2017). Wavelet Analysis of Cytological Preparations Image in Different Color Systems. Open Access Library Journal, 4, e3760.

Zeleniy, O., Rudenko, D., Lyubchenko, V., & Lyashenko, V. (2022). Image Processing as an Analysis Tool in Medical Research. Image, 6(9), 135-141.

Abu-Jassar AT, Attar H, Amer A, et al. Development and Investigation of Vision System for a Small-Sized Mobile Humanoid Robot in a Smart Environment. International Journal of Crowd Science, 2024.

Lyubchenko, V., Veretelnyk, K., Kots, P., & Lyashenko, V. (2024). Digital image segmentation procedure as an example of an NP-problem. Multidisciplinary Journal of Science and Technology, 4(4), 170-177.

Babker, A. M., Suliman, R. S., Elshaikh, R. H., Boboyorov, S., & Lyashenko, V. (2024). Sequence of Simple Digital Technologies for Detection of Platelets in Medical Images. Biomedical and Pharmacology Journal, 17(1), 141-152.

Abu-Jassar, A., Al-Sharo, Y., Boboyorov, S., & Lyashenko, V. (2023, December). Contrast as a Method of Image Processing in Increasing Diagnostic Efficiency When Studying Liver Fatty Tissue Levels. In 2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI) (pp. 1-5). IEEE.

Deineko Zhanna, Shakurova Tetyana, & Lyashenko Vyacheslav. (2023). Guilloche rosette as an element of building complex geometric structures. Journal of Universal Science Research, 1(10), 526–534.

Color correction of the input image as an element of improving the quality of its visualization / M. Yevstratov, V. Lyubchenko, Abu-Jassar Amer, V. Lyashenko // Technical science research in Uzbekistan. – 2024. – № 2(4). – P. 79-88.

Maksymova, S., & Chala, O. (2023). Defect Engineering: Application in Automation System Components Production Technological Processes. Multidisciplinary Journal of Science and Technology, 3(3), 243-251.

Yevsieiev, V., & et al. (2023). An Automatic Assembly SMT Production Line Operation Technological Process Simulation Model Development. International Science Journal of Engineering & Agriculture, 2(2), 1-9.

Perdigones, F. (2021). Lab-on-PCB and flow driving: A critical review. Micromachines, 12(2), 175.

Zhou, Y., & et al. (2023). Review of vision-based defect detection research and its perspectives for printed circuit board. Journal of Manufacturing Systems, 70, 557-578.

Li, Y. T., & et al. (2020). Automatic industry PCB board DIP process defect detection with deep ensemble method. In 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), IEEE, 453-459.

Fridman, Y., & et al. (2021). ChangeChip: A reference-based unsupervised change detection for PCB defect detection. In 2021 IEEE Physical Assurance and Inspection of Electronics (PAINE), IEEE, 1-8.

Zakaria, S. S., & et al. (2020). Automated detection of printed circuit boards (PCB) defects by using machine learning in electronic manufacturing: Current approaches. In Iop conference series: Materials science and engineering, IOP Publishing, 767(1), 012064.

Wang, Y., & et al. (2022). Integrated inspection on PCB manufacturing in cyber–physical–social systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(4), 2098-2106.

Liu, Z., & Qu, B. (2021). Machine vision based online detection of PCB defect. Microprocessors and Microsystems, 82, 103807.

Hu, B., & Wang, J. (2020). Detection of PCB surface defects with improved faster-RCNN and feature pyramid network. Ieee Access, 8, 108335-108345.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.