3D FRAKTAL INTERPOLYATSIYA YORDAMIDA SIRTLARNI MODELLASHTIRISH
PDF
DOI

Keywords

Fraktal interpolyatsiya, uch o‘lchovli sirt (3D), model, Banachning oʻzgarmas nuqta teoremasi, Rakotchning qoʻzgʻalmas nuqta teoremasi, takrorlangan funksiya tizimlari (RIFS), paraboloid.

How to Cite

3D FRAKTAL INTERPOLYATSIYA YORDAMIDA SIRTLARNI MODELLASHTIRISH. (2024). Journal of Universal Science Research, 2(6), 329-335. https://universalpublishings.com/~niverta1/index.php/jusr/article/view/6387

Abstract

Ushbu maqolada uch o‘lchovli (3D) fraktal interpolyatsiya tushunchasi va undan 3D sirtlarni modellashtirishda foydalanish imkoniyatlari muhokama qilinadi. Shuni ta’kidlash kerakki, ushbu maqola fraktal interpolyatsiyani model sifatida emas, balki faqat raqamli vosita sifatida ko‘rib chiqadi. Tadqiqotning maqsadi berilgan 3D sirt uchun modellarni olish va ularni ma’lum darajada unga o‘xshatish metodologiyasini yaratishdir. Modellar to‘plamini esa 3D grafik tasvir, muayyan texnologik jarayonni simulyatsiya qilish, yopishtirilgan yuzalar uchun sifatni baholash kerak bo‘lganda tekshirish mumkin. Muayyan 3D sirtni o‘lchash va modellar to‘plamini yaratish o‘lchovlarni ko‘p marotaba bajarishdan ko‘ra ancha tejamkor.

PDF
DOI

References

Barnsley M. Fractal functions and interpolation. Constr Approx 1986;2:303–29. [2] Barnsley M. Fractals everywhere. New York: Academic Press; 1988.

Ri S, 101142/S0218348X17500633. A new nonlinear fractal interpolation function. Fractals 2017;25(6). 1750063 (12 pages).

Massopust P. Fractal functions, fractal surfaces and wavelets. San Diego: Academic Press; 1994.

Wang HY, Xu Z. A class of rough surfaces and their fractal dimensions. J MathAnal Appl 2001;259:537–53.

Ruan H, Xu Q. Fractal interpolation surfaces on rectangular grids. Bull AustMath Soc 2015;91:435–46.

Feng Z. Variation and Minkowski dimension of fractal interpolation surface. J

Math Anal Appl 2008;345:322–34.

Dalla L. Bivariate fractal interpolation functions on grids. Fractals 2002;10(1):53–8.

Feng ZG, Feng YZ, Yuan ZY. Fractal interpolation surfaces with function vertical

scaling factors. Appl Math Lett 2012;25(11):1896–900.

Ri S. Nonlinear bivariate fractal interpolation function on grids. Chaos Solitons

Fractals 2015;81:351–8.

Ri S. A new nonlinear bivariate fractal interpolation function. Fractals 2018;26(4). 1850054 (14 pages). doi: 10.1142/S0218348X18500548.

Rakotch R. A note on contractive mappings. Proc Amer Math Soc 1962;13:459–65.

Geraghty M. On contractive mappings. Proc Amer Math Soc 1973;40(2):604–8.

Strobin F. Attractors of generalized IFSs that are not attractors of IFSs. J Math Anal Appl 2015;422:99–108.

Łukawska GG, Jachymski J. The Hutchinson–Barnsley theory for infinite iterated function systems. Bull Aust Math Soc 2005;72:441–54.

Jachymski J, Józwik ´ I. Nonlinear contractive conditions: a comparison and related problems. Banach Center Publ 2007;77:123–46.

Rhoades B. A comparison of various definitions of contractive mappings. Trans

Amer Math Soc 1977;226:257–90.

Ri S. A new fixed point theorem in the fractal space. Indagationes Mathematicae 2016;27:85–93

Mantas Landauskas. Modeling of surfaces using 3D fractal interpolation. Lietuvos matematikos rinkinys Vol. 54, 2013, 22–26.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.