Abstract
Asetatsetanilidning konformerlari va tautomerlari DFT (B3LYP/6-311++G**) va IQ spektroskopiya usullari bilan o'rganilgan. Molekulyar O–H∙∙∙O va N–H∙∙∙O vodorod bogʻlanishi orqali hosil boʻlgan asetoasetanilid dimerlarining geometriyasi va energiya parametrlari olindi. Azot va kislorod atomlarining elektron juftlari va C=O karbonil guruhining antibogʻlovchi π*-orbitallari hamda atsetoasetanilid tautomerlaridagi qoʻsh va yakka bogʻlarning donor-akseptor oʻzaro taʼsirining energiyasi NBO usuli yordamida hisoblangan.
References
Hussain, S.M., El-Reedy, A.M., and El-Sherabasy, S.A., J. Heterocycl. Chem., 1988, vol. 25, p. 9. https://doi.org/10.1002/jhet.5570250102
El-Meligie, S.E.M., Khalil, N.A., El-Nassan, H.B., and Ibraheem, A.A.M., Curr. Org. Chem., 2019, vol. 23, p. 2005. https://doi.org/10.2174/1385272823666191021120336
Li, W., Zheng, Y., Qu, E., Bai, J., and Deng, Q., Eur. J. Org. Chem., 2021, p. 5151. https://doi.org/10.1002/ejoc.202100692
4. Smith, K.M., Bu, Y., and Suga, H., Chem. Biol., 2003, vol. 10, p. 81.
https://doi.org/10.1016/s1074-5521(03)00002-4
Kim, E.J., Lee, J.H., Choi, H., Pereira, A.R., Ban, Y.H., Yoo, Y.J., Kim, E., Park, J.W., Sherman, D.H., Gerwick, W.H., and Yoon, Y.J., Org. Lett., 2012, vol. 14, p. 5824.
https://doi.org/10.1021/ol302575h
Nogawa, T., Terai, A., Amagai, K., Hashimoto, J., Futamura, Y., Okano, A., Fujie, M., Satoh, N., Ikeda, H., Shin-Ya, K., Osada, H., and Takahashi, S., J. Nat. Prod., 2020, vol. 83, p. 3598. https://doi.org/10.1021/acs.jnatprod.0c00755
Raczynska, E.D., Kosinska Osmiałowski, W.B., and Gawinecki, R., Chem. Rev., 2005, vol. 105, p. 3561. https://doi.org/10.1021/cr030087h
Iglesias, E., Curr. Org. Chem., 2004, vol. 8, p. 1. https://doi.org/10.2174/1385272043486124
Smith, K.T., Young, S.C., DeBlasio, J.W., and Hamann, C.S., J. Chem. Educ., 2016, vol. 93, p. 790. https://doi.org/10.1021/acs.jchemed.5b00170
Sandler, I., Harper, J.B., and Ho, J., J. Chem. Educ., 2021, vol. 98, p. 1043. https://doi.org/10.1021/acs.jchemed.0c01076
Ruiz, D.L., Albesa, A.G., Ponzinibbio, A., Allegretti, P.E., and Schiavoni, M.M., J. Phys. Org. Chem., 2010, vol. 23, p. 985. https://doi.org/10.1002/poc.1764
Hynes, M.J. and Clarke, E.M., J. Chem. Soc. Perkin Trans., 1994, vol. 2, p. 901. https://doi.org/10.1039/P29940000901
Wengenroth, H. and Meier, H., Chem. Ber., 1990, vol. 123, p. 1403. https://doi.org/10.1002/cber.19901230633
Naoum, M.M. and Saad, G.R., J. Solut. Chem., 1998, vol. 17, p. 67. https://doi.org/10.1007/BF00651854
Laurella, S.L., Sierra, M.G., Furlong, J.J.P., and Allegretti, P.E., Open J. Phys. Chem., 2013, vol. 3, p. 138. https://doi.org/10.4236/ojpc.2013.34017
Laurella, S.L., Latorrea, C., Dietricha, R., Furlong, J.J.P., and Allegretti, P.E., J. Phys. Org. Chem., 2012, vol. 25, p. 1365. https://doi.org/10.1002/poc.305
Newberry, R.W., Orke, S.J., and Raines, R.T., Org. Lett., 2016, vol. 18, p. 3614. https://doi.org/10.1021/acs.orglett.6b0165
Sung, K., Wu, R.-R., and Sun, S.-U., J. Phys. Org. Chem., 2002, vol. 15, p. 775. https://doi.org/10.1002/poc.554
Castillo, S., Bouissou, T., Favrot, J., Brazier, J.F., and Fayet, J.P., Spectrochim. Acta A, 1993, vol. 49, p. 1591. https://doi.org/10.1016/0584-8539(93)80116-R
Gilli, P., Bertolasi, V., Ferretti, V., and Gilli, G., J. Am. Chem. Soc., 2000, vol. 122, p. 10405. https://doi.org/10.1021/ja000921+
Downs, J.R., Grant, S.P., Townsend, J.D., Schady, D.A., Pastine, S.J., Embree, M.C., Metz, C.R., Pennington, W.T., Walsch, R.D.B., and Beam, C.F., Canad. J. Chem.,
, vol. 82, p. 659. https://doi.org/10.1139/v04-029
Ke, Z., Lam, Y.-P., Chan, K.-S., and Yeung, Y.-Y., Org. Lett., 2020, vol. 22, p. 7353.
https://doi.org/10.1021/acs.orglett.0c02701
Zhang, Z., Gao, X., Yu, H., Bi, J., and Zhang, G., ACS Omega., 2017, vol. 2, p. 7746.
https://doi.org/10.1021/acsomega.7b01526
Lieby-Muller, F., Constantieux, T., and Rodriguez, J., J. Am. Chem. Soc., 2005, vol. 127, p. 17176. https://doi.org/10.1021/ja055885z.
Tkachenko, V.V., Muravyova, E.A., Desenko, S.M., Shishkin, O.V., Shishkina, S.V., Sysoiev, D.O., Müller, T.J.J., and Chebanov, V.A., Beilstein J. Org. Chem., 2014, vol. 10, p. 3019. https://doi.org/10.3762/bjoc.10.320
Azzam, R.A. and Moharebb, R.M., Chem. Pharm. Bull., 2015, vol. 63, p. 1055. https://doi.org/10.1248/cpb.c15-00685
Kubozono, Y., Kohno, I., Ooishi, K., Namazue, S., Haisa, M., and Kashino, S., Bull. Chem. Soc. Japan, 1992, vol. 65, p. 3234. https://doi.org/10.1246/bcsj.65.3234
Prabhu, Sh.G. and Rao, P.M., J. Crystal Growth, 2000, vol. 210, p. 824. https://doi.org/10.1016/0960-8974(90)90020-S
Vijayana, N., Babua, R.R., Gopalakrishnana, R., and Ramasamy, P., J. Crystal Growth, 2004, vol. 267, p. 646. https://doi.org/10.1016/j.jcrysgro.2004.04.008
Ravikumar, C., Joe, I.H., and Sajan, D., Chem. Phys., 2010, vol. 369, p. 1.
Ravikumar, C. and Joe, I.H., XXII Int. Conf. Raman Spectrosc., 2010, p. 1267. https://doi.org/10.1063/1.3482727
Senthilkannan, K., Venkatachalam, K., Thamarikannan, P., Kalaipoonguzhali, V., Kannan, S., and Jothibas, M., AIP Conf. Proceed., 2020, vol. 2270, no. 1, p. 040014. https://doi.org/10.1063/5.0019332
Arjunan, V., Kalaivani, M., Senthilkumari, S., and Mohan, S., Spectrochim. Acta (A), 2013, vol. 115, p. 154. https://doi.org/10.1016/j.saa.2013.06.003
Barros, M.T., Geraldes, C.F., Maycock, C.D., and Silva, M.I., J. Mol. Struct., 1986, vol. 142, p. 435. https://doi.org/10.1016/0022-2860(86)85150-X
Naoum, M.M. and Saad, G.R., Indian J. Chem. (A), 1987, vol. 26, p. 510.
Schiavoni, M.M., Di Loreto, H.E., Hermann, A., Mack, H.-G., Ulic, S.E., and Védova, C.O.D., J. Raman Spectrosc., 2001, vol. 32, p. https://doi.org/10.1002/jrs.701
Karthika, M., Senthilkumar, L., and Kanakaraju, R., Comp. Theor. Chem., 2012, vol. 979, p. 54. https://doi.org/10.1016/j.comptc.2011.10.015
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford, CT, 2010.
This work is licensed under a Creative Commons Attribution 4.0 International License.