Atsetilasetoanilid hosilalari va ular asosidagi Ni(II) va Cu(II) kompleks birikmalarining sintezi, tuzilishi va xossalari.
PDF
DOI

Keywords

asetoasetanilid, tautomerizm, vodorod bog'lanishi, IQ spektroskopiyasi, kvant kimyoviy hisoblashlar.

How to Cite

Rakhmatova R.S. (2024). Atsetilasetoanilid hosilalari va ular asosidagi Ni(II) va Cu(II) kompleks birikmalarining sintezi, tuzilishi va xossalari. Journal of Universal Science Research, 2(1), 112–121. Retrieved from https://universalpublishings.com/index.php/jusr/article/view/3790

Abstract

Asetatsetanilidning konformerlari va tautomerlari DFT (B3LYP/6-311++G**) va IQ spektroskopiya usullari bilan o'rganilgan. Molekulyar O–H∙∙∙O va N–H∙∙∙O vodorod bogʻlanishi orqali hosil boʻlgan asetoasetanilid dimerlarining geometriyasi va energiya parametrlari olindi. Azot va kislorod atomlarining elektron juftlari va C=O karbonil guruhining antibogʻlovchi π*-orbitallari hamda atsetoasetanilid tautomerlaridagi qoʻsh va yakka bogʻlarning donor-akseptor oʻzaro taʼsirining energiyasi NBO usuli yordamida hisoblangan.

PDF
DOI

References

Hussain, S.M., El-Reedy, A.M., and El-Sherabasy, S.A., J. Heterocycl. Chem., 1988, vol. 25, p. 9. https://doi.org/10.1002/jhet.5570250102

El-Meligie, S.E.M., Khalil, N.A., El-Nassan, H.B., and Ibraheem, A.A.M., Curr. Org. Chem., 2019, vol. 23, p. 2005. https://doi.org/10.2174/1385272823666191021120336

Li, W., Zheng, Y., Qu, E., Bai, J., and Deng, Q., Eur. J. Org. Chem., 2021, p. 5151. https://doi.org/10.1002/ejoc.202100692

4. Smith, K.M., Bu, Y., and Suga, H., Chem. Biol., 2003, vol. 10, p. 81.

https://doi.org/10.1016/s1074-5521(03)00002-4

Kim, E.J., Lee, J.H., Choi, H., Pereira, A.R., Ban, Y.H., Yoo, Y.J., Kim, E., Park, J.W., Sherman, D.H., Gerwick, W.H., and Yoon, Y.J., Org. Lett., 2012, vol. 14, p. 5824.

https://doi.org/10.1021/ol302575h

Nogawa, T., Terai, A., Amagai, K., Hashimoto, J., Futamura, Y., Okano, A., Fujie, M., Satoh, N., Ikeda, H., Shin-Ya, K., Osada, H., and Takahashi, S., J. Nat. Prod., 2020, vol. 83, p. 3598. https://doi.org/10.1021/acs.jnatprod.0c00755

Raczynska, E.D., Kosinska Osmiałowski, W.B., and Gawinecki, R., Chem. Rev., 2005, vol. 105, p. 3561. https://doi.org/10.1021/cr030087h

Iglesias, E., Curr. Org. Chem., 2004, vol. 8, p. 1. https://doi.org/10.2174/1385272043486124

Smith, K.T., Young, S.C., DeBlasio, J.W., and Hamann, C.S., J. Chem. Educ., 2016, vol. 93, p. 790. https://doi.org/10.1021/acs.jchemed.5b00170

Sandler, I., Harper, J.B., and Ho, J., J. Chem. Educ., 2021, vol. 98, p. 1043. https://doi.org/10.1021/acs.jchemed.0c01076

Ruiz, D.L., Albesa, A.G., Ponzinibbio, A., Allegretti, P.E., and Schiavoni, M.M., J. Phys. Org. Chem., 2010, vol. 23, p. 985. https://doi.org/10.1002/poc.1764

Hynes, M.J. and Clarke, E.M., J. Chem. Soc. Perkin Trans., 1994, vol. 2, p. 901. https://doi.org/10.1039/P29940000901

Wengenroth, H. and Meier, H., Chem. Ber., 1990, vol. 123, p. 1403. https://doi.org/10.1002/cber.19901230633

Naoum, M.M. and Saad, G.R., J. Solut. Chem., 1998, vol. 17, p. 67. https://doi.org/10.1007/BF00651854

Laurella, S.L., Sierra, M.G., Furlong, J.J.P., and Allegretti, P.E., Open J. Phys. Chem., 2013, vol. 3, p. 138. https://doi.org/10.4236/ojpc.2013.34017

Laurella, S.L., Latorrea, C., Dietricha, R., Furlong, J.J.P., and Allegretti, P.E., J. Phys. Org. Chem., 2012, vol. 25, p. 1365. https://doi.org/10.1002/poc.305

Newberry, R.W., Orke, S.J., and Raines, R.T., Org. Lett., 2016, vol. 18, p. 3614. https://doi.org/10.1021/acs.orglett.6b0165

Sung, K., Wu, R.-R., and Sun, S.-U., J. Phys. Org. Chem., 2002, vol. 15, p. 775. https://doi.org/10.1002/poc.554

Castillo, S., Bouissou, T., Favrot, J., Brazier, J.F., and Fayet, J.P., Spectrochim. Acta A, 1993, vol. 49, p. 1591. https://doi.org/10.1016/0584-8539(93)80116-R

Gilli, P., Bertolasi, V., Ferretti, V., and Gilli, G., J. Am. Chem. Soc., 2000, vol. 122, p. 10405. https://doi.org/10.1021/ja000921+

Downs, J.R., Grant, S.P., Townsend, J.D., Schady, D.A., Pastine, S.J., Embree, M.C., Metz, C.R., Pennington, W.T., Walsch, R.D.B., and Beam, C.F., Canad. J. Chem.,

, vol. 82, p. 659. https://doi.org/10.1139/v04-029

Ke, Z., Lam, Y.-P., Chan, K.-S., and Yeung, Y.-Y., Org. Lett., 2020, vol. 22, p. 7353.

https://doi.org/10.1021/acs.orglett.0c02701

Zhang, Z., Gao, X., Yu, H., Bi, J., and Zhang, G., ACS Omega., 2017, vol. 2, p. 7746.

https://doi.org/10.1021/acsomega.7b01526

Lieby-Muller, F., Constantieux, T., and Rodriguez, J., J. Am. Chem. Soc., 2005, vol. 127, p. 17176. https://doi.org/10.1021/ja055885z.

Tkachenko, V.V., Muravyova, E.A., Desenko, S.M., Shishkin, O.V., Shishkina, S.V., Sysoiev, D.O., Müller, T.J.J., and Chebanov, V.A., Beilstein J. Org. Chem., 2014, vol. 10, p. 3019. https://doi.org/10.3762/bjoc.10.320

Azzam, R.A. and Moharebb, R.M., Chem. Pharm. Bull., 2015, vol. 63, p. 1055. https://doi.org/10.1248/cpb.c15-00685

Kubozono, Y., Kohno, I., Ooishi, K., Namazue, S., Haisa, M., and Kashino, S., Bull. Chem. Soc. Japan, 1992, vol. 65, p. 3234. https://doi.org/10.1246/bcsj.65.3234

Prabhu, Sh.G. and Rao, P.M., J. Crystal Growth, 2000, vol. 210, p. 824. https://doi.org/10.1016/0960-8974(90)90020-S

Vijayana, N., Babua, R.R., Gopalakrishnana, R., and Ramasamy, P., J. Crystal Growth, 2004, vol. 267, p. 646. https://doi.org/10.1016/j.jcrysgro.2004.04.008

Ravikumar, C., Joe, I.H., and Sajan, D., Chem. Phys., 2010, vol. 369, p. 1.

Ravikumar, C. and Joe, I.H., XXII Int. Conf. Raman Spectrosc., 2010, p. 1267. https://doi.org/10.1063/1.3482727

Senthilkannan, K., Venkatachalam, K., Thamarikannan, P., Kalaipoonguzhali, V., Kannan, S., and Jothibas, M., AIP Conf. Proceed., 2020, vol. 2270, no. 1, p. 040014. https://doi.org/10.1063/5.0019332

Arjunan, V., Kalaivani, M., Senthilkumari, S., and Mohan, S., Spectrochim. Acta (A), 2013, vol. 115, p. 154. https://doi.org/10.1016/j.saa.2013.06.003

Barros, M.T., Geraldes, C.F., Maycock, C.D., and Silva, M.I., J. Mol. Struct., 1986, vol. 142, p. 435. https://doi.org/10.1016/0022-2860(86)85150-X

Naoum, M.M. and Saad, G.R., Indian J. Chem. (A), 1987, vol. 26, p. 510.

Schiavoni, M.M., Di Loreto, H.E., Hermann, A., Mack, H.-G., Ulic, S.E., and Védova, C.O.D., J. Raman Spectrosc., 2001, vol. 32, p. https://doi.org/10.1002/jrs.701

Karthika, M., Senthilkumar, L., and Kanakaraju, R., Comp. Theor. Chem., 2012, vol. 979, p. 54. https://doi.org/10.1016/j.comptc.2011.10.015

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford, CT, 2010.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.