Abstract
Light olefins, including ethylene, propylene, butenes, and butadienes, are the main
building blocks used in the chemical industry to produce polymers, solvents, construction,
synthetic fibers, etc. [1-6]. Ethylene can be used to produce polyethylene, polyvinyl chloride,
etc. Due to the increasing demand for polyethylene, ethylene production is expected to
increase from 169 million tons in 2017 to 230 million tons in 2023. Propylene is used to
produce polypropylene, acrylonitrile , etc. [ 7-11 ]. Annual butene production is around 132
million tons, among which isobutene is mainly used as a raw material for the production of
alkylates [ 12-17 ].
References
1. Hsu, CS; Robinson, PR Petroleum Science and Technology; Springer International
Publishing: Cham, Switzerland, 2019.
2. Speight, JG (Ed.) Organic Chemistry. In Environmental Organic Chemistry for Engineers;
Butterworth-Heinemann: Oxford, UK, 2017; Chapter 2, pp. 43–86, doi:10.1016/B978-0-12-
804492-6.00002-2.
3. Fakhroleslam, M.; Sadrameli, SM Thermal Cracking of Hydrocarbons for the Production
of Light Olefins; A Review on Optimal Process Design, Operation, and Control. Ind. Most.
Chem. Res. 2020, 59, 12288–12303, doi:10.1021/acs.iecr.0c00923.
4. Deloitte. The Future of Petrochemicals: Growth Surrounded by Uncertainty. 2019.
Available online: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/energyresources/us-the-future-of-petrochemicals.pdf (accessed on 28 June 2021).
5. Blay, W.; Louis, B.; Miravalles, R.; Yokoi, T.; Peccatiello, CA; Clough, M.; Yilmaz, B.
Engineering zeolites for catalytic cracking to light olefins. ACS Catal. 2017, 7, 6542–6566,
doi:10.1021/acscatal.7b02011.
6. Ren, T.; Patel, M.; Block, K. Olefins from Conventional and Heavy Feedstocks: Energy
Use in Steam Cracking and Alternative Processes. Energy 2006, 31, 425–451,
doi:10.1016/j.energy.2005.04.001.
7. Amghizar, I.; Vandewalle, LA; Van Geem, KM; Marin, GB New Trends in Olefin
Production. Engineering 2017, 3, 171–178, doi:10.1016/J.ENG.2017.02.006.
8. Dugkhuntod, P.; Wattanakit, C. A Comprehensive Review of the Applications of
Hierarchical Zeolite Nanosheets and Nanoparticle Assemblies in Light Olefin Production.
Catalysts 2020, 10, 245, doi:10.3390/catal10020245.
9. Akah, A.; Williams, J.; Ghrami, M. An Overview of Light Olefins Production via Steam
Enhanced Catalytic Cracking. Catal. Surv. Asia 2019, 23, 265–276, doi:10.1007/s10563-019-
09280-6. Energies 2021, 14, 8190 24 of 25
10. Alotaibi, FM; González-Cortés, S.; Alotibi, MF; Xiao, T.; Al-Megren, H.; Yang, G.;
Edwards, PP Enhancing the Production of Light Olefins from Heavy Crude Oils: Turning
Challenges into Opportunities. Catal. Today 2018, 317, 86–98,
doi:10.1016/j.cattod.2018.02.018.
30
"YANGI O‘ZBEKISTONDA TABIIY VA IJTIMOIY-GUMANITAR
FANLAR" RESPUBLIKA ILMIY-AMALIY KONFERENSIYASI
Volume 2, Issue 12, Dekabr 2024
11. Roudgar Saffari, P.; Salarian, H.; Lohrasby, A.; Salehi, G. The Numerical Simulation of
Olefin Production Furnace for Pollution Reduction: Two Case Studies. Gas Process. J. 2021,
9, 15–32, doi:10.22108/GPJ.2020.125609.1092.
12. Depeyre, D.; Flicoteaux, C.; Chardaire, C. Thermal Steam Cracking of Pure nhexadecane. Ind. Most. Chem. Process Des. Dev. 1985, 24, 1251–1258,
doi:10.1021/i200031a059.
13. Bender, M. An Overview of Industrial Processes for the Production of Olefins—C4
Hydrocarbons. ChemBioEng Rev. 2014, 1, 136–147, doi:10.1002/cben.201400016.
14. Zhao, Z.; Jiang, J.; Wang, F. An Economic Analysis of Twenty Light Olefin Production
Pathways. J. Energy Chem. 2021, 56, 193–202, doi:10.1016/j.jechem.2020.04.021.
15. Gholami, Z.; Gholami, F.; Tisler, Z.; Thomas, M.; Vakili, M. A Review on Production of
Light Olefins via Fluid Catalytic Cracking. Energies 2021, 14, 1089,
doi:10.3390/en14041089.
16. Faizullayev, NI; Umirzakov, RR To obtain acetone by spontaneous hydration of
acetylene. ACS National Meeting Book of Abstracts . 2005. Vol. 229, pp. U598-U598. Web
of Science Core Collection https://www.webofscience.com/wos/woscc/fullrecord/WOS:000235066602537 .
17. Muradov, KM, Faizullayev, NI, & Zohidov, KA Investigation of influence of various
factors on oxidative condensation of methane in C 2 -hydrocarbons. In Abstracts of Papers of
the American Chemical Society. 2003. Vol. 226, pp. U258-U259. 1155 16TH ST, NW,
Washington, DC 20036 USA: Amer Chemical Soc.
https://www.webofscience.com/wos/woscc/full-record/WOS:000187062501250 .
18.Faizullaev, N. Gas chromatographic study of catalytic steam-phase hydration of acetylene.
In Abstracts of Papers of the American Chemical Society. 2003. Vol. 225, pp. U112-U112.
1155 16TH ST, NW, Washington, DC 20036 USA: Amer Chemical Soc.
https://www.webofscience.com/wos/woscc/full-record/WOS:000187917800439