NOMETAL BILAN MODIFIKATSIYA QILINGAN MEZOG‘OVAKLI SEOLITLI KATALİZATORLAR ISHTIROKIDA PROPAN-BUTAN ARALASHMASIDAGI CC BOG‘INING UZILISHI BILAN BORADIGAN PARLANISH
PDF
ZENODO

How to Cite

NOMETAL BILAN MODIFIKATSIYA QILINGAN MEZOG‘OVAKLI SEOLITLI KATALİZATORLAR ISHTIROKIDA PROPAN-BUTAN ARALASHMASIDAGI CC BOG‘INING UZILISHI BILAN BORADIGAN PARLANISH. (2024). Yangi O’zbekistonda Tabiiy Va Ijtimoiy-Gumanitar Fanlar Respublika Ilmiy Amaliy Konferensiyasi, 2(12), 9-13. https://universalpublishings.com/index.php/gumanitar/article/view/8891

Abstract

Engil olefinlar, shu jumladan etilen, propilen, butenlar va butadienlar kimyo sanoatida 
polimerlar, erituvchilar, qurilish, sintetik tolalar va boshqalar ishlab chiqarish uchun 
ishlatiladigan asosiy qurilish bloklaridir [1-6]. Etilendan polietilen, polivinilxlorid va 
boshqalar ishlab chiqarish uchun foydalanish mumkin. Polietilenga talab ortib borishi 
munosabati bilan etilen ishlab chiqarish 2017-yildagi 169 million tonnadan, 2023-yilda 230 
million tonnagacha oshishi kutilmoqda. Propilen polipropilen, akrilonitril va boshqalar, 
ishlab chiqarish uchun ishlatiladi [7-11]. Yillik buten ishlab chiqarish 132million tonna 
atrofida bo'lib, ular orasida izobuten asosan alkilatlar ishlab chiqarish uchun xom ashyo 
sifatida ishlatiladi [12-17]. 

PDF
ZENODO

References

1. Hsu, C.S.; Robinson, P.R. Petroleum Science and Technology; Springer International

Publishing: Cham, Switzerland, 2019.

2. Speight, J.G. (Ed.) Organic Chemistry. In Environmental Organic Chemistry for

Engineers; Butterworth-Heinemann: Oxford, UK, 2017; Chapter 2, pp. 43–86,

doi:10.1016/B978-0-12-804492-6.00002-2.

3. Fakhroleslam, M.; Sadrameli, S.M. Thermal Cracking of Hydrocarbons for the Production

of Light Olefins; A Review on Optimal Process Design, Operation, and Control. Ind. Eng.

Chem. Res. 2020, 59, 12288–12303, doi:10.1021/acs.iecr.0c00923.

4. Deloitte. The Future of Petrochemicals: Growth Surrounded by Uncertainty. 2019.

Available online: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/energyresources/us-the-future-of-petrochemicals.pdf (accessed on 28 June 2021).

5. Blay, V.; Louis, B.; Miravalles, R.; Yokoi, T.; Peccatiello, K.A.; Clough, M.; Yilmaz, B.

Engineering цеолитes for catalytic cracking to light olefins. ACS Catal. 2017, 7, 6542–6566,

doi:10.1021/acscatal.7b02011.

6. Ren, T.; Patel, M.; Blok, K. Olefins from Conventional and Heavy Feedstocks: Energy use

in Steam Cracking and Alternative Processes. Energy 2006, 31, 425–451,

doi:10.1016/j.energy.2005.04.001.

7. Amghizar, I.; Vandewalle, L.A.; Van Geem, K.M.; Marin, G.B. New Trends in Olefin

Production. Engineering 2017, 3, 171–178, doi:10.1016/J.ENG.2017.02.006.

8. Dugkhuntod, P.; Wattanakit, C. A Comprehensive Review of the Applications of

Hierarchical Цеолитe Nanosheets and Nanoparticle Assemblies in Light Olefin Production.

Catalysts 2020, 10, 245, doi:10.3390/catal10020245.

13

"YANGI O‘ZBEKISTONDA TABIIY VA IJTIMOIY-GUMANITAR

FANLAR" RESPUBLIKA ILMIY-AMALIY KONFERENSIYASI

Volume 2, Issue 12, Dekabr 2024

9. Akah, A.; Williams, J.; Ghrami, M. An Overview of Light Olefins Production via Steam

Enhanced Catalytic Cracking. Catal. Surv. Asia 2019, 23, 265–276, doi:10.1007/s10563-019-

09280-6. Energies 2021, 14, 8190 24 of 25

10. Alotaibi, F.M.; González-Cortés, S.; Alotibi, M.F.; Xiao, T.; Al-Megren, H.; Yang, G.;

Edwards, P.P. Enhancing the Production of Light Olefins from Heavy Crude Oils: Turning

Challenges into Opportunities. Catal. Today 2018, 317, 86–98,

doi:10.1016/j.cattod.2018.02.018.

11. Roudgar Saffari, P.; Salarian, H.; Lohrasbi, A.; Salehi, G. The Numerical Simulation of

Olefin Production Furnace for Pollution Reduction: Two Case Studies. Gas Process. J. 2021,

9, 15–32, doi:10.22108/GPJ.2020.125609.1092.

12. Depeyre, D.; Flicoteaux, C.; Chardaire, C. Pure n-hexadecane Thermal Steam Cracking.

Ind. Eng. Chem. Process Des. Dev. 1985, 24, 1251–1258, doi:10.1021/i200031a059.

13. Bender, M. An Overview of Industrial Processes for the Production of Olefins—C4

Hydrocarbons. ChemBioEng Rev. 2014, 1, 136–147, doi:10.1002/cben.201400016.

14. Zhao, Z.; Jiang, J.; Wang, F. An Economic Analysis of Twenty Light Olefin Production

Pathways. J. Energy Chem. 2021, 56, 193–202, doi:10.1016/j.jechem.2020.04.021.

15. Gholami, Z.; Gholami, F.; Tišler, Z.; Tomas, M.; Vakili, M. A Review on Production of

Light Olefins via Fluid Catalytic Cracking. Energies 2021, 14, 1089,

doi:10.3390/en14041089.

16. Fayzullayev, N. I.; Umirzakov, R. R. To obtain acetone by spontaneously hydration of

acetylene. ACS National Meeting Book of Abstracts. 2005. Vol. 229, pp. U598-U598. Web

of Science Core Collection https://www.webofscience.com/wos/woscc/fullrecord/WOS:000235066602537.

17. Muradov, K. M., Fayzullayev, N. I., & Zohidov, K. A. Investigation of influence of

various factors to oxidative condensation of methane in C2-hydrocarbons. In Abstracts of

Papers of the American Chemical Society. 2003. Vol. 226, pp. U258-U259. 1155 16TH ST,

NW, Washington, DC 20036 USA: Amer Chemical Soc.

https://www.webofscience.com/wos/woscc/full-record/WOS:000187062501250.

18.Fayzullaev, N. Gas chromatographic study of catalytic steam-phase hydration of

acetylene. In Abstracts of Papers of the American Chemical Society. 2003. Vol. 225, pp.

U112-U112. 1155 16TH ST, NW, Washington, DC 20036 USA: Amer Chemical Soc.

https://www.webofscience.com/wos/woscc/full-record/WOS:00018791780043