Abstract
Ushbu maqolada bir jinsli differensial tenglamalar sistemasi traektoriyalarini o'rganish masalasi ko'rib chiqiladi. Maqolada mavzuga oid adabiyotlar tahlili, usullar va yondashuvlar, shuningdek, natijalar va xulosalar keltirilgan. Tadqiqot natijalariga ko'ra, bir jinsli differensial tenglamalar sistemasi traektoriyalarini o'rganishda fazaviy portret usuli, Lyapunov usuli va boshqa zamonaviy usullarning samaradorligi aniqlandi.
References
1. Strogatz, S.H., 2018. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC press.
2. Perko, L., 2013. Differential equations and dynamical systems. Springer Science & Business Media.
3. Hirsch, M.W., Smale, S. and Devaney, R.L., 2012. Differential equations, dynamical systems, and an introduction to chaos. Academic press.
4. Guckenheimer, J. and Holmes, P., 2013. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Science & Business Media.
5. Lyapunov, A.M., 1992. The general problem of the stability of motion. International journal of control, 55(3), pp.531-534.
6. Khalil, H.K., 2002. Nonlinear systems. Upper Saddle River.
7. Wiggins, S., 2003. Introduction to applied nonlinear dynamical systems and chaos. Springer Science & Business Media.
8. Kuznetsov, Y.A., 2013. Elements of applied bifurcation theory. Springer Science & Business Media.
This work is licensed under a Creative Commons Attribution 4.0 International License.