TARMOQ TRAFIGINI SHIFRLAYDIGAN ETHERNET KARTASIGA INTEGRATSILANUVCHI APPARAT MAJMUASINING ARXITEKTURASINI ISHLAB CHIQISH MASALALARI
PDF
ZENODO

Keywords

GSM standarti, e-mail, Web, FTP, TCP/IP protokoli, LAN, OSI tarmoq modeli, MAC ramkalari, IEEE 802.1D shaffof ko‘prik, ICMP Redirect, User Datagram Protocol, Transmission Control Protocol, MS-CHAP2 autentifikatsiyasi, Point-to-Point Tunneling Protocol (PPTP), AES (Kengaytirilgan shifrlash standarti) simmetrik blok, IPsec (IP xavfsizligi), OpenSSL kripto kutubxonasi, GNU General Public License (GNU General Public License) ostida tarqatiladigan OpenVPN buzib kirishiga olib kelishi mumkin

How to Cite

TARMOQ TRAFIGINI SHIFRLAYDIGAN ETHERNET KARTASIGA INTEGRATSILANUVCHI APPARAT MAJMUASINING ARXITEKTURASINI ISHLAB CHIQISH MASALALARI. (2025). Journal of Universal Science Research, 3(`1), 182-200. http://universalpublishings.com/index.php/jusr/article/view/9575

Abstract

Ushbu maqola tarmoq trafigini shifrlaydigan Ethernet kartasiga 
integratsilanuvchi apparat majmuasining arxitekturasini ishlab chiqish TCP/IP protokoli 
stekiga asoslangan paketli kommutatsiyalangan kompyuter tarmog‘ining (Ethernet) 
trafikni boshqarish to‘g‘irisida. Ethernet kartasi texnologiyasidan foydalanishning 
bugungi kundagi ahamiyati: tarmoq trafigini shifrlaydigan Ethernet kartasi
arxitekturasini shakllantirish va kartaga integratsiyalovchi apparat majmuasini 
yechimlarga bag‘ishlangan. 

PDF
ZENODO

References

1. Vishnevskiy, VM Markazlashtirilmagan boshqaruv bilan simsiz tarmoqlarni modellashtirish [Matn] / VM Vishnevskiy, AI Lyaxov, BN Tereshchenko // Avtomatlashtirish va telemexanika. - 1999. - No 6. - B. 88–99.

2. Verbitskiy, S. N. Xizmat ko‘rsatish stavkasini boshqarishning optimal siyosatini raqamli o‘rganish [Matn] / S. N. Verbitskiy, V. V. Rikov // Avtomatlashtirish va telemexanika. - 1998. - No 11. - B. 59–70.

3. Ivnitskiy, V. A. O‘tish ehtimoli uning holatiga bog‘liq bo‘lgan yulduz shaklidagi yopiq navbat tarmog‘i holatining statsionar ehtimolliklari to‘g‘risida [Matn] / V. A. Ivnitskiy // Avtomatlashtirish va kompyuter texnologiyalari. - 1994. - No 6. - B. 29–37.

4. Bakanov, AC Markazlashtirilgan boshqaruvga ega simsiz tarmoqlarning ishlash ko‘rsatkichlarini baholash usuli [Matn] / AC Bakanov, V. M. Vishnevskiy, A. I. Lyaxov // Avtomatlashtirish va telemexanika. - 2000. - No 4. - B. 97-105.

5. Gibbens, RJ Ko‘p parentli tarmoqlarda dinamik marshrutlash [Matn] / R. Gibbens, FP Kelly, SRE Turner // IEEE / Networking bo‘yicha ACM tranzaksiyalari. - 1993. - jild. 1, iss. 2. - B. 261–270.

6. Korilis, YA Stackelberg marshrutlash strategiyalari yordamida tarmoq optimalligiga erishish [Matn] / YA Korilis, AA Lazar, A. Orda // Networking bo‘yicha IEEE / ACM tranzaktsiyalari. – 1997.

7. H. Zaynidinov, O. Mallayev, Parallel algorithm for calculating the learning processes of an artificial neural network. AIP Conference Proceedings 2647, 050006 (2022). doi: https://doi.org/10.1063/5.0104178.

8. Yusupov I, Nurmurodov J, Ibragimov S, Gofurjonov M, Qobilov S. “Calculation of Spectral Coefficients of Signals on the Basis of Haar by the Method of Machine Learning”, 14th International Conference, IHCI 2022, Tashkent, Uzbekistan, October 20–22, 2022, pp 547–558. https://link.springer.com/conference/ihci.

9. Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010, Springer.

10. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

11. Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

12. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

13. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer.

14. Shukla, P. (2019). The Gradient Descent Algorithm and Its Variants. arXiv preprint arXiv:1908.10448. doi: 10.1093/ptep/ptaa104.

15. https://www.baeldung.com/cs/gradient-stochastic-and-mini-batch.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.