LIGHTING CONTROL MODULE SOFTWARE DEVELOPMENT
PDF
DOI

Keywords

Lighting control, Illumination control, Lighting module, Intelligent production, Software, Web-application, Arduino.

How to Cite

LIGHTING CONTROL MODULE SOFTWARE DEVELOPMENT. (2024). Journal of Universal Science Research, 2(2), 29-42. http://universalpublishings.com/index.php/jusr/article/view/4156

Abstract

This article describes the development software for a lighting control module based on Arduino Mega. At first main requirements for such software development are considered. These requirements include the following: lighting monitoring; determination of the normative level of illumination; deviation warning; lighting control. A client-server model was used. The client part is implemented in the form of a web interface, and the server part provides data storage and processing.

PDF
DOI

References

Lyashenko, V., & et al. (2023). Automated Monitoring and Visualization System in Production Int. Res. J. Multidiscip. Technovation, 5(6), 09-18.

Bondariev, A., & et al. (2023). Automated Monitoring System Development for Equipment Modernization. Journal of Universal Science Research, 1(11), 6-16.

Maksymova, S., & et al. (2024). The Monitoring System Architecture Development. Journal of Universal Science Research, 2(1), 69-79.

Невлюдов, І. Ш., та ін. (2023) Моделі та методи кіберфізичних виробничих систем в концепції Industry 4.0 : монографія. Oktan Print, Prague, 321 c.

Nevliudov, I., & et al. (2020). Development of an ArchitecturalLogical Model to Automate the Management of the Process of Creating Complex Cyberphysical Industrial Systems. Eastern-European Journal of Enterprise Technologies, 4 (3-106), 44-52.

Attar, H., Abu-Jassar, A. T., Amer, A., Lyashenko, V., Yevsieiev, V., & Khosravi, M. R. (2022). Control System Development and Implementation of a CNC Laser Engraver for Environmental Use with Remote Imaging. Computational intelligence and neuroscience, 2022, 9140156.

Abu-Jassar, A. T., Attar, H., Yevsieiev, V., Amer, A., Demska, N., Luhach, A. K., & Lyashenko, V. (2022). Electronic User Authentication Key for Access to HMI/SCADA via Unsecured Internet Networks. Computational Intelligence and Neuroscience, 2022, 5866922.

Abu-Jassar, A. T., Al-Sharo, Y. M., Lyashenko, V., & Sotnik, S. (2021). Some Features of Classifiers Implementation for Object Recognition in Specialized Computer systems. TEM Journal: Technology, Education, Management, Informatics, 10(4), 1645-1654.

Nevliudov, I., & et al.. (2020). Method of Algorithms for Cyber-Physical Production Systems Functioning Synthesis. International Journal of Emerging Trends in Engineering Research, 8(10), 7465-7473.

Lyashenko, V., Deineko, Z., & Ahmad, A. (2015). Properties of Wavelet Coefficients of Self-Similar Time Series. International Journal of Scientific and Engineering Research, 6, 1492-1499.

Nevliudov, I., Yevsieiev, V., Lyashenko, V., & Ahmad, M. A. (2021). GUI Elements and Windows Form Formalization Parameters and Events Method to Automate the Process of Additive Cyber-Design CPPS Development. Advances in Dynamical Systems and Applications, 16(2), 441-455.

Mustafa, S. K., Yevsieiev, V., Nevliudov, I., & Lyashenko, V. (2022). HMI Development Automation with GUI Elements for Object-Oriented Programming Languages Implementation. SSRG International Journal of Engineering Trends and Technology, 70(1), 139-145.

Zharikova, I., & et al. (2023). Automatic Machine of Plastic Bottles and Aluminum Cans Collection for Recycling. Journal of Universal Science Research, 1(11), 169-178.

Stetsenko, K., & et al. (2023). Exploring BEAM Robotics for Adaptive and Energy-Efficient Solutions. Multidisciplinary Journal of Science and Technology, 3(4), 193-199.

Bortnikova, V., & et al. (2019). Mathematical model of equivalent stress value dependence from displacement of RF MEMS membrane. In 2019 IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), IEEE, 83-86.

Funkendorf, A., & et al. (2019). 79 Mathematical Model of Adapted Ultrasonic Bonding Process for MEMS Packaging. In 2019 IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), IEEE, 79-82.

Nevliudov, I., & et al. (2018). Modeling MEMS membranes characteristics. In САПР у проектуванні машин. Задачі впровадження та навчання: матеріали XXVI Міжнародної українсько-польської науково-технічної конференції, Видавництво Львівської політехніки, 61-68.

Tvoroshenko, I., Ahmad, M. A., Mustafa, S. K., Lyashenko, V., & Alharbi, A. R. (2020). Modification of models intensive development ontologies by fuzzy logic. International Journal of Emerging Trends in Engineering Research, 8(3), 939-944.

Lyashenko, V., Ahmad, M. A., Sotnik, S., Deineko, Z., & Khan, A. (2018). Defects of communication pipes from plastic in modern civil engineering. International Journal of Mechanical and Production Engineering Research and Development, 8(1), 253-262.

Lyashenko, V. V., Matarneh, R., Baranova, V., & Deineko, Z. V. (2016). Hurst Exponent as a Part of Wavelet Decomposition Coefficients to Measure Long-term Memory Time Series Based on Multiresolution Analysis. American Journal of Systems and Software, 4(2), 51-56.

Kobylin, O., & Lyashenko, V. (2014). Comparison of standard image edge detection techniques and of method based on wavelet transform. International Journal, 2(8), 572-580.

Dadkhah, M., Lyashenko, V. V., Deineko, Z. V., Shamshirband, S., & Jazi, M. D. (2019). Methodology of wavelet analysis in research of dynamics of phishing attacks. International Journal of Advanced Intelligence Paradigms, 12(3-4), 220-238.

Sotnik, S., Mustafa, S. K., Ahmad, M. A., Lyashenko, V., & Zeleniy, O. (2020). Some features of route planning as the basis in a mobile robot. International Journal of Emerging Trends in Engineering Research, 8(5), 2074-2079.

Lyubchenko, V., Matarneh, R., Kobylin, O., & Lyashenko, V. (2016). Digital image processing techniques for detection and diagnosis of fish diseases. International Journal of Advanced Research in Computer Science and Software Engineering, 6(7), 79-83.

Sotnik, S., & Lyashenko, V. (2022). Prospects for Introduction of Robotics in Service. Prospects, 6(5), 4-9.

Kuzomin, O., Lyashenko, V., Tkachenko, M., Ahmad, M. A., & Kots, H. (2016). Preventing of technogenic risks in the functioning of an industrial enterprise. International Journal of Civil Engineering and Technology, 7(3), 262-270.

Boboyorov Sardor Uchqun o‘g‘li, Lyubchenko Valentin, & Lyashenko Vyacheslav. (2023). Image Processing Techniques as a Tool for the Analysis of Liver Diseases. Journal of Universal Science Research, 1(8), 223–233.

Lyashenko, V., Zeleniy, O., Mustafa, S. K., & Ahmad, M. A. (2019). An advanced methodology for visualization of changes in the properties of a dye. International Journal of Engineering and Advanced Technology, 9(1), 711-7114.

Sotnik, S., & et al.. (2022). Analysis of Existing Infliences in Formation of Mobile Robots Trajectory. International Journal of Academic Information Systems Research, 6(1), 13-20.

Vizir, Y., & et al. (2023). Lighting Control Module Development. Journal of Universal Science Research, 1(12), 645-657.

Ahmed, H. A., & et al. (2020). Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. South African Journal of Botany, 130, 75-89.

Sánchez Sutil, F., & Cano-Ortega, A. (2020). Smart public lighting control and measurement system using LoRa network. Electronics, 9(1), 124.

Seyedolhosseini, A., & et al. (2020). Daylight adaptive smart indoor lighting control method using artificial neural networks. Journal of Building Engineering, 29, 101141.

Wagiman, K. R., & et al. (2020). Lighting system control techniques in commercial buildings: Current trends and future directions. Journal of Building Engineering, 31, 101342.

Artiyasa, M., & et al. (2020). Comparative Study of Internet of Things (IoT) Platform for Smart Home Lighting Control Using NodeMCU with Thingspeak and Blynk Web Applications. FIDELITY: Jurnal Teknik Elektro, 2(1), 1-6.

Jin, Y., & et al. (2021). A data-driven model predictive control for lighting system based on historical occupancy in an office building: Methodology development. In Building Simulation, Tsinghua University Press, 14, 219-235.

Carli, R., & Dotoli, M. (2020). A dynamic programming approach for the decentralized control of energy retrofit in large-scale street lighting systems. IEEE Transactions on Automation Science and Engineering, 17(3), 1140-1157.

Gagliardi, G., & et al. (2020). Advanced adaptive street lighting systems for smart cities. Smart Cities, 3(4), 1495-1512.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.