Published February 6, 2024 | Version v1
Journal article Open

Using Contouring Algorithms to Select Objects in the Robots' Workspace

  • 1. Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Description

This paper explores the application of contouring algorithms to accurately highlight objects in the robots’ workspace. We present a mathematical description of the developed algorithm and a Python program that implements it in the PyCharm 2022.2.3 (Professional Edition) environment. Experiments carried out using this algorithm focused on outlining a matchbox while changing the pixel intensity threshold. The results obtained confirm the effectiveness of the method and highlight its potential for optimizing the processes of robotic perception of the environment and interaction with objects.

Files

32-42 Vladyslav Yevsieiev.pdf

Files (1.6 MB)

Name Size Download all
md5:4e97905de3698fec63d077da931cf6cf
1.6 MB Preview Download

Additional details

References

  • 1. Abu-Jassar, A. T., Al-Sharo, Y. M., Lyashenko, V., & Sotnik, S. (2021). Some Features of Classifiers Implementation for Object Recognition in Specialized Computer systems. TEM Journal: Technology, Education, Management, Informatics, 10(4), 1645-1654.
  • 2. Baker, J. H., Laariedh, F., Ahmad, M. A., Lyashenko, V., Sotnik, S., & Mustafa, S. K. (2021). Some interesting features of semantic model in Robotic Science. SSRG International Journal of Engineering Trends and Technology, 69(7), 38-44.
  • 3. Rabotiahov, A., Kobylin, O., Dudar, Z., & Lyashenko, V. (2018, February). Bionic image segmentation of cytology samples method. In 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET) (pp. 665-670). IEEE.
  • 4. Гиренко, А. В., Ляшенко, В. В., Машталир, В. П., & Путятин, Е. П. (1996). Методы корреляционного обнаружения объектов. Харьков: АО "БизнесИнформ, 112.
  • 5. Al-Sharo, Y. M., Abu-Jassar, A. T., Sotnik, S., & Lyashenko, V. (2021). Neural Networks As A Tool For Pattern Recognition of Fasteners. International Journal of Engineering Trends and Technology, 69(10), 151-160.
  • 6. Matarneh R., & et al. (2017). Building Robot Voice Control Training Methodology Using Artificial Neural Net. International Journal of Civil Engineering and Technology, 8(10), 523–532.
  • 7. Akopov, M., & et al. (2023). Choosing a Camera for 3D Mapping. Journal of Universal Science Research, 1(11), 28-38.
  • 8. Abu-Jassar, A., & Maksymova, S. (2023). Obstacle Avoidance Sensors: A Brief Overview. Multidisciplinary Journal of Science and Technology, 3(5), 4-10.
  • 9. Yevsieiev, V., & et al. (2022). Development of an Algorithm for ESP32-Cam Operation in HTTP Server Mode for Streaming Video. Collection of scientific papers «ΛΌГOΣ», Paris, 177-179.
  • 10. Maksymova S., & et al. (2017). Software for Voice Control Robot: Example of Implementation. Open Access Library Journal, 4, 1-12.