
  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

113 

 

WEB SITE RELIABILITY ANALYSIS USING THE PYTHON PARSING 

METHOD 

 

Dmytro Gurin1, 

Svitlana Maksymova1, 

Vladyslav Yevsieiev1, 

Ahmad Alkhalaileh2 

 

1Department of Computer-Integrated Technologies, Automation and Robotics, 

Kharkiv National University of Radio Electronics, Ukraine 

2Senior Developer Electronic Health Solution, Amman, Jordan 

 

ABSTRACT: 

This article discusses methods for analyzing the reliability of a Web site using 

the parsing method based on the Python language. A generalized reliability analysis 

algorithm is presented that allows you to assess the quality and stability of the 

functioning of a website. The algorithm is based on parsing structural elements of the 

page, such as HTML tags, links , text blocks, and analysis of their state and contents. 

To implement the algorithm, a Python program was developed that is capable of 

automatically analyzing a selected website and identifying potential problems. The 

experiment showed the effectiveness and accuracy of the developed approach, which 

allows it to be used for systematic monitoring and increasing the reliability of websites. 

Key words: Parsing, Website, Structure, Python, Manufacturing Innovation, 

Industrial Innovation 

 

INTRODUCTION 

In the modern world, websites are the main tool of communication and 

information exchange for organizations and users [1]-[10]. However, for effective use 

and improvement of web resources, it is necessary to analyze their structure. The 

development of a website structure analysis program using the parsing method based 

on the Python language is becoming more and more relevant and necessary. 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

114 

 

The main purpose of such a program is to study the internal structure of the 

website, its components and the connections between them. This allows you to evaluate 

the usability of the site, optimize its navigation and increase the overall efficiency of 

the web project. Analyzing the structure of the website also helps to identify errors and 

vulnerabilities, improve SEO indicators and increase the general availability of 

information. 

One of the key tools for analyzing the structure of a website is the parsing 

method, which allows you to extract and analyze data on web pages. Python is used in 

completely different areas, starting from robotics [11]-[19] and ending with website 

analysis [20]-[25]. It is one of the most popular programming languages for creating 

web analytics programs due to its simplicity, flexibility and rich ecosystem of libraries. 

Website structure analysis programs can be useful both for owners of web 

resources and for specialists in web development and SEO optimization. They allow 

you to systematize information about the structure of the site, identify problems and 

offer solutions for their elimination. Therefore, various methods and approaches can be 

used here [26]-[36]. 

Related works 

 Many works are devoted to the analysis of the reliability of websites. There are 

used plenty of methods and instruments to solve such problems. Let's consider several 

recent works on this topic.  

Authors in [20] present an empirical study of 1,396 vulnerability reports affecting 

698 Python packages in the Python ecosystem (PyPi). They study a set of 2,224 GitHub 

Python projects, to better understand the prevalence of vulnerabilities in their 

dependencies and how fast it takes to update them. Theirr findings show that the 

discovered vulnerabilities in Python packages are increasing over time, and they take 

more than 3 years to be discovered. 

Utami, I. S., & Setiadi, H. in [21] evaluate and improve website performance by 

analyzing the quality of the Sebelas Maret University selection of new student 

admissions (SPMB) website by utilizing a combination of WebQual 4.0 and Importance 

Performance Analysis (IPA) methods. 

The study [22] presents an nalysis of website quality by calculating webqual 

index to determine the level of quality of the website based on the WQI coefficient 

interval. 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

115 

 

The research [23] aims to develop and validate a scale to measure website service 

quality in the hotel industry, namely HWebSQ. 

Scientists in [24] note that analyzing public information from social networking 

sites could produce exciting results and insights on the public opinion of almost any 

product, service, or behavior. This paper also discusses the sentiment analysis design, 

gathering data, training the data, and visualizing the data using the Python library. 

The paper [25] explore how to develope a crawler with scontrolable and 

automatic crawling abilitys which can crawl specific target; Then the data that is 

crawled will be analysised and visualized by using Pandas library and Matplotlib 

library, the useful information will be extracted from the data analysis and visualization 

process, so as to complete. 

Thus, we see a variety of areas of website analysis. Below in this article we will 

look at analyzing the reliability of sites using the Python parsing method. 

Web site reliability algorithm and program for analyzing development  

Analyzing the web page reliability using a Python-based parser has its own 

characteristics that are important to consider. First, Python provides a wide selection of 

libraries for working with web pages, such as requests for sending HTTP requests, 

BeautifulSoup for parsing HTML code, and others. This makes it easy to access and 

analyze page content. Second, Python has a convenient and understandable syntax that 

simplifies the development of scripts for analyzing web pages. A third feature is the 

extensive support of the Python community, which provides many useful packages, 

documentation, and code examples for a variety of web parsing tasks. In addition, 

Python can be used to automate routine tasks, such as regularly performing page 

reliability analysis or automating the process of monitoring connection stability. 

Another feature is the possibility of integration with other tools and services to obtain 

a wider range of functionality, for example, saving analysis results in a database or 

integration with web page monitoring services. Overall, Python is a powerful and easy-

to-use tool for web site reliability analysis that makes this process fast, efficient, and 

convenient. 

We will use the store's website at the address 'https://epicentrk.ua/ua/shop/' as a 

base site for the research of parsing methods for analyzing the reliability of the Web 

site. 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

116 

 

Before the development of the parsing program for analyzing the reliability of 

the Web site 'https://epicentrk.ua/ua/shop/ not based on the Python language, the 

following algorithm was developed, which is presented in Figure 1. 

As you can see from Figure 1, the following libraries will be used in the 

developed program: 

– requests is used to implement HTTP requests using the Python programming 

language. Using requests allows you to retrieve web page content, perform POST 

requests, pass parameters, manage cookies, and other aspects of HTTP requests. It is 

convenient for working with website APIs, receiving data for parsing or interacting 

with web servers. 

– BeautifulSoup is a tool for parsing HTML and XML documents in Python. It 

allows you to parse incoming data from web pages and conveniently extract the 

necessary elements using CSS selectors, XPath or other methods. BeautifulSoup makes 

parsing HTML code simple and effective, and is used in many projects to retrieve data 

from the Internet. 

pip install requests 

pip install beautifulsoup4 

The first command will install the requests library, and the second - 

beautifulsoup4. After installing these libraries, you can import them into your Python 

programs and use their functionality. 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

117 

 

 
Figure 1: Web parsing program algorithm - site 'https://epicentrk.ua/ua/shop/ 

The developed software parsing code of the Web site with an explanation, is 

presented below: 

import requests 

from bs4 import BeautifulSoup 

This piece of code is used to work with web pages in the Python programming 

language. Let's look at each part separately: 

import requests: This line imports the requests module, which allows you to 

interact with HTTP requests. With its help, you can send HTTP requests to a web server 

and receive responses. For example, you can send a GET request to retrieve the content 

of a web page; 

Start 

Importing the 

requests and 

BeautifulSoup 

libraries 

Setting the URL 

response  

code =200 

Error message 

No 

Yes 

Getting the page 

load time 

Getting the HTML 

code of the page 

Getting the number 

of requests and 

responses per page 

Finish 

Handling possible 

exceptions 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

118 

 

from bs4 import BeautifulSoup: This line imports the BeautifulSoup class from 

the bs4 module. BeautifulSoup is a library for working with HTML code. It allows you 

to easily parse HTML documents, access their elements and extract the necessary 

information. When a web page is submitted, you can use BeautifulSoup to parse its 

HTML code and extract the necessary data such as headers, links, text, etc. 

So, these two import instructions allow you to make HTTP requests to web 

servers and parse the HTML code of web pages in a Python environment, making it 

easy to analyze and retrieve information from websites. 

def analyze_webpage(url): 

    try: 

        # We send a request to the server and receive a response 

        response = requests.get(url) 

        # We check the status code of the server response 

        if response.status_code == 200: 

            print("Server response status code: 200 (Success)") 

        else: 

            print(f" Server response status code: {response.status_code}") 

This piece of code is the analyze_webpage function, which sends a request to the 

web server at the specified URL and checks the status code of the server's response. 

Let's examine each line of code: 

def analyze_webpage(url):: This is the declaration of the analyze_webpage 

function, which takes a single url parameter. This function is designed to parse the page 

from the specified URL. 

try:: Start of the try-except block used to handle exceptions. In this case, we'll try 

to execute some code, and if an error occurs, we'll handle it. 

response = requests.get(url): Uses the requests library to send an HTTP request 

to the specified URL. requests.get(url) makes a GET request for this URL and returns 

a response object that contains information about the server's response. 

if response.status_code == 200:: We check the status code of the server's 

response. If the status code is 200, it means the server responded successfully, and we 

output the message "Server Response Status Code: 200 (Success)". 

else:: In case the status code is not equal to 200, we print a message with the 

actual value of the status code. 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

119 

 

This code snippet demonstrates checking the status code of the server's response 

after sending a request to the specified URL, allowing you to determine whether the 

request was successful. 

# We get the page load time 

        load_time = response.elapsed.total_seconds() 

        print(f"Page load time: {load_time} s") 

This piece of code calculates the time it took to load the response page from the 

server. Let's take a closer look at this line: 

response.elapsed is an attribute of the response object that represents the time it 

took to download the response. 

.total_seconds() is a method that returns the total number of seconds in a 

timedelta object. 

So this line of code calculates the time it took to load the response page from the 

server in seconds and assigns it to the load_time variable. 

After this time is calculated, it is printed on the screen using the print function, 

which uses a formatted string to print the value of the load_time variable along with the 

text message "Page Load Time:" 

# We get the HTML code of the page 

        html_content = response.content 

        soup = BeautifulSoup(html_content, 'html.parser') 

This code snippet retrieves the HTML code of the response page from the server 

and parses it using the BeautifulSoup library. Let's break down each line: 

response.content is an attribute of the response object that contains the content 

of the web page in bytes. 

html_content is a variable to which the content of the page is written in byte form. 

BeautifulSoup(html_content, 'html.parser') is a constructor for a BeautifulSoup 

object that creates a BeautifulSoup object for further HTML parsing. 

html_content is a string with the byte content of the page we want to parse. 

'html.parser' is a string that tells BeautifulSoup to use the built-in HTML parser 

to process HTML code. 

So this piece of code allows you to get the HTML code of a web page and create 

a BeautifulSoup object that can be used to further parse and analyze the HTML 

structure of the page. 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

120 

 

   # We get the number of requests and responses on the page 

        requests_count = len(soup.find_all()) 

        print(f"The number of requests and responses on the page: 

{requests_count}") 

This piece of code defines the number of requests and responses per page. Let us 

consider each line: 

soup.find_all() - This BeautifulSoup method is used to find all elements on the 

page that match the specified criteria. With no arguments in the find_all() method, it 

returns a list of all elements on the page. 

len() - this function is used to calculate the number of elements in a list. 

requests_count is a variable that records the number of items found, which 

reflects the number of requests and responses on the page. 

print() - this function displays a text message on the screen. 

f"Number of requests and responses per page: {requests_count}" is a formatted 

string in which the value of the requests_count variable is substituted as a number. This 

message is displayed on the screen and shows the number of requests and responses on 

the page. 

So, this piece of code allows you to find and display the number of requests and 

responses on a website page. 

# We study the metadata of the page 

        title = soup.title.text if soup.title else " The page title is missing " 

        meta_description = soup.find('meta', {'name': 'description'}) 

        description = meta_description['content'] if meta_description else " There is 

no meta description " 

        print(f"Page title: {title}") 

        print(f"Page meta description: {description}") 

This piece of code parses the page's metadata, such as the title and meta 

description. Let us consider each line: 

soup.title - this expression is used to find the <title> tag in the HTML structure 

of the page, if such a tag exists. 

.text is an attribute that gets the textual content of the tag. If the <title> tag exists, 

.text will return its text content. 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

121 

 

if soup.title else "Page title is missing" is a Python ternary operator that checks 

if the <title> tag exists. If the <title> tag exists, the value of the title variable will be 

equal to the text content of the <title> tag. Otherwise, the string "Page name is missing" 

is set. 

soup.find('meta', {'name': 'description'}) - This BeautifulSoup method is used to 

find the <meta> tag with the name='description' attribute. The <meta 

name='description'> tag is often used to define the meta description of a page. 

meta_description['content'] - this expression receives the value of the content 

attribute of the <meta> tag, if such a tag exists and contains the content attribute. 

if meta_description else "No meta description" - this ternary operator checks if 

the <meta name='description'> tag exists. If such a tag exists and has a content attribute, 

the value of the description variable will be equal to the value of the content attribute. 

Otherwise, the line "Meta-description is missing" is set. 

So, this piece of code allows you to get and display the title and meta description 

of the page. 

    except Exception as e: 

        print(f"Error: {e}") 

This code snippet handles exception handling using the try-except construct. 

Let's take a look at this snippet: 

except Exception as e: - this construct is used to handle any exception that occurs 

during the execution of the code in the try block. Exception is the base class for all 

exceptions in Python. 

as e - tells Python that the exception that is thrown will be accessed through the 

e variable. 

print() - this function is used to display an error message on the screen. 

f"Error: {e}" is a formatted string in which the value of the variable e (the 

exception) is inserted into the message text. Thus, an error message is displayed along 

with the error text itself. 

This piece of code allows you to catch any exceptions that occur during the 

execution of the try block and print an error message to the screen describing the error. 

# Call the function to analyze the web page 

url = 'https://epicentrk.ua/ua/shop/' # Replace the URL with the desired one 

analyze_webpage(url) 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

122 

 

This code snippet calls the analyze_webpage(url) function to analyze the web 

page at the specified URL. Let's take a look at this snippet: 

url = 'https://epicentrk.ua/ua/shop/' - the URL of the page to be analyzed is set. 

In this case, this is the page of the online store "Epicenter K", but you can replace this 

URL with any other that you want to analyze. 

analyze_webpage(url) - This command calls the analyze_webpage() function 

with the specified URL as an argument. The function will parse the page for this URL. 

So this piece of code calls a function to parse the web page at the specified URL. 

The results of parsing the website https://epicentrk.ua/ua/shop/ based on the 

Python language are presented in Figure 2. 

 

 
Figure 2: The results of parsing the website https://epicentrk.ua/ua/shop/ 

Conclusion 

As a result of the conducted research, a generalized algorithm for analyzing the 

websites reliability was developed. It was based on the methods of parsing web pages 

using the Python programming language. This algorithm allows you to effectively 

identify potential problems in the functioning of websites, such as unavailability of 

pages, errors in the content or structure of the site. 

The program developed in Python successfully implements the proposed 

algorithm and is capable of automatically analyzing selected websites. In the process 

of experimental research, the effectiveness and accuracy of the developed approach was 

verified. The results showed that the algorithm and the program are able to detect 

various types of problems, which allows them to be used for systematic monitoring and 

increasing the reliability of websites. 

This approach to the websites reliability analysis has practical significance for 

owners and administrators of web resources, as it allows to quickly identify and 

eliminate problems that can lead to a decrease in the quality of user service. Also, this 

approach can be used to automate the process of monitoring and increase the reliability 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

123 

 

of websites, which will save time and resources in the maintenance and support of web 

resources. 

REFERENCES: 

1. Omarov, M., Tikhaya, T., & Lyashenko, V. (2019). Internet marketing 

metrics visualization methodology for related search queries. International Journal of 

Advanced Trends in Computer Science and Engineering, 8(5), 2277-2281. 

2. Dadkhah, M., Lyashenko, V. V., Deineko, Z. V., Shamshirband, S., & 

Jazi, M. D. (2019). Methodology of wavelet analysis in research of dynamics of 

phishing attacks. International Journal of Advanced Intelligence Paradigms, 12(3-4), 

220-238. 

3. Vasiurenko, O., Lyashenko, V., Baranova, V., & Deineko, Z. (2020). 

Spatial-Temporal Analysis the Dynamics of Changes on the Foreign Exchange Market: 

an Empirical Estimates from Ukraine. Journal of Asian Multicultural Research for 

Economy and Management Study, 1(2), 1-6. 

4. Deineko, Zh., & et al.. (2021). Features of Database Types. International 

Journal of Engineering and Information Systems (IJEAIS), 5(10), 73-80. 

5. Sotnik, S., & et al.. (2023). Development Features Web-Applications. 

International Journal of Academic and Applied Research (IJAAR), 7(1), 79-85. 

6. Sotnik, S. Overview: PHP and MySQL Features for Creating Modern Web 

Projects/ S Sotnik, V. Manakov, V. Lyashenko //International Journal of Academic 

Information Systems Research (IJAISR). – 2023. – Vol. 7, Issue 1. – P. 11-17. 

7. Lyashenko, V., Kobylin, O., & Baranchykov, Y. (2018, October). 

Ideology of Image Processing in Infocommunication Systems. In 2018 International 

Scientific-Practical Conference Problems of Infocommunications. Science and 

Technology (PIC S&T) (pp. 47-50). IEEE. 

8. Z. Deineko, S. Sotnik, V. Lyashenko, “Multimedia Systems in Education,” 

International Journal of Academic Information Systems Research (IJAISR). 2022, vol. 

6 issue 7, pp. 23-28. 

9. Kuzomin, O., & et al.. (2020). Mobile Expert System for Diagnostic 

Human State in Emergency Situations. International Journal of Advanced Trends in 

Computer Science and Engineering, 9(4), 6485-6489. 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

124 

 

10. Omarov, M., Tykha, T., & Lyashenko, V. (2019). Use of Wavelet 

Techniques in the Study of Internet Marketing Metrics. Eskişehir Technical University 

Journal of Science and Technology A-Applied Sciences and Engineering, 20, 157-163. 

11. Stetsenko, K., & et al. (2023). Exploring BEAM Robotics for Adaptive 

and Energy-Efficient Solutions.  Multidisciplinary Journal of Science and Technology, 

3(4), 193-199. 

12. Yevsieiev, V., & et al. (2024). Using Contouring Algorithms to Select 

Objects in the Robots’ Workspace. Technical Science Research In Uzbekistan, 2(2), 

32-42. 

13. Shcherbyna, V., & et al. (2023). Mobile Robot for Fires Detection 

Development. Journal of Universal Science Research,  1(11), 17-27. 

14. Yevsieiev, V., & et al. (2024). Active Contours Method Implementation 

for Objects Selection in the Mobile Robot’s Workspace. Journal of Universal Science 

Research, 2(2), 135-145. 

15. Nevliudov, I., & et al. (2023). Mobile Robot Navigation System Based on 

Ultrasonic Sensors. In2023 IEEE XXVIII International Seminar/Workshop on Direct 

and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED),IEEE, 

1, 247-251. 

16. Yevsieiev, V., & et al. (2024). Object Recognition and Tracking Method 

in the Mobile Robot’s Workspace in Real Time. Technical Science Research In 

Uzbekistan, 2(2), 115-124. 

17. Basiuk, V., & et al. (2023). Mobile Robot Position Determining Using 

Odometry Method. Multidisciplinary Journal of Science and Technology, 3(3), 227-

234. 

18. Yevsieiev, V., & et al. (2024). The Canny Algorithm Implementation For 

Obtaining the Object Contour in a Mobile Robot’s Workspace in Real Time. Journal of 

Universal Science Research, 2(3), 7-19. 

19. Yevsieiev, V., & et al. (2022). A robotic prosthetic a control system and a 

structural diagram development. Collection of scientific papers «ΛΌГOΣ», Zurich, 

Switzerland, 113-114. 

20. Alfadel, M., & et al. (2023). Empirical analysis of security vulnerabilities 

in python packages. Empirical Software Engineering, 28(3), 59. 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

125 

 

21. Utami, I. S., & Setiadi, H. (2021). Analysis the effect of website quality 

on user satisfaction with the WebQual 4.0 method and importance-performance 

analysis (IPA)(case study: SPMB Sebelas Maret University’s Website). In Journal of 

Physics: Conference Seriesб IOP Publishing, 1842(1), p. 012003.  

22. Syahputri, K., & et al. (2021). Analysis of website service quality with 

webqual 4.0 integration method. In IOP Conference Series: Materials Science and 

Engineering, IOP Publishing, 1122(1), p. 012035. 

23. Nguyen, H. T. T., & et al. (2020). Development and validation of a scale 

measuring hotel website service quality (HWebSQ). Tourism Management 

Perspectives, 35, 100697. 

24. Gunawan, T. S., & et al. (2020). Social network analysis using python data 

mining. In 2020 8th international conference on cyber and IT service management 

(CITSM), IEEE, 1-6. 

25. Wu, H., & et al. (2020). Data analysis and crawler application 

implementation based on python. In 2020 International Conference on Computer 

Network, Electronic and Automation (ICCNEA), IEEE, 389-393. 

26. Nevliudov, I., Yevsieiev, V., Baker, J. H., Ahmad, M. A., & Lyashenko, 

V. (2020). Development of a cyber design modeling declarative Language for cyber 

physical production systems. J. Math. Comput. Sci., 11(1), 520-542. 

27. Nevliudov, I., & et al.. (2020). Method of Algorithms for Cyber-Physical 

Production Systems Functioning Synthesis. International Journal of Emerging Trends 

in Engineering Research, 8(10), 7465-7473. 

28. Abu-Jassar, A. T., Attar, H., Yevsieiev, V., Amer, A., Demska, N., 

Luhach, A. K., & Lyashenko, V. (2022). Electronic User Authentication Key for 

Access to HMI/SCADA via Unsecured Internet Networks. Computational intelligence 

and neuroscience, 2022, 5866922. 

29. Al-Sherrawi, M. H., Lyashenko, V., Edaan, E. M., & Sotnik, S. (2018). 

Corrosion as a source of destruction in construction. International Journal of Civil 

Engineering and Technology, 9(5), 306-314. 

30. Lyashenko, V. V., Deineko, Z. V., & Ahmad, M. A. Properties of wavelet 

coefficients of self-similar time series. In other words, 9, 16. 

31. Nevliudov, I., Yevsieiev, V., Lyashenko, V., & Ahmad, M. A. (2021). 

GUI Elements and Windows Form Formalization Parameters and Events Method to 

https://journalseeker.researchbib.com/view/issn/2181-4570


  

 

ISSN (E): 2181-4570 ResearchBib Impact Factor: 6,4 / 2023 SJIF 2024 = 5.073/Volume-2, Issue-5 

126 

 

Automate the Process of Additive Cyber-Design CPPS Development. Advances in 

Dynamical Systems and Applications, 16(2), 441-455. 

32. Mustafa, S. K., Yevsieiev, V., Nevliudov, I., & Lyashenko, V. (2022). 

HMI Development Automation with GUI Elements for Object-Oriented Programming 

Languages Implementation. SSRG International Journal of Engineering Trends and 

Technology, 70(1), 139-145. 

33. Kuzomin, O., Ahmad, M. A., Kots, H., Lyashenko, V., & Tkachenko, M. 

(2016). Preventing of technogenic risks in the functioning of an industrial enterprise. 

International Journal of Civil Engineering and Technology, 7(3), 262-270. 

34. Al-Sharo, Y. M., Abu-Jassar, A. T., Sotnik, S., & Lyashenko, V. (2023). 

Generalized Procedure for Determining the Collision-Free Trajectory for a Robotic 

Arm. Tikrit Journal of Engineering Sciences, 30(2), 142-151. 

35. Lyashenko, V., Laariedh, F., Ayaz, A. M., & Sotnik, S. (2021). 

Recognition of Voice Commands Based on Neural Network. TEM Journal: 

Technology, Education, Management, Informatics, 10(2), 583-591. 

36. Maksymova, S., Matarneh, R., & Lyashenko, V. V. (2017). Software for 

Voice Control Robot: Example of Implementation. Open Access Library Journal, 4, 

e3848. 

https://journalseeker.researchbib.com/view/issn/2181-4570

