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 Abstract: The article examines methods of data fusion (Data Fusion) for 

collaborative manipulator robots in the context of Industry 5.0. Three approaches are 

considered: Kalman filter, Bayesian estimation and Dempster-Shafer theory. The 

Kalman filter has proven to be effective for linear systems, but requires modification 

for nonlinear problems. Bayesian estimation provides accuracy for complex systems, 

although it requires more resources. The Dempster-Shafer theory is effective under data 

uncertainty, but has a high computational complexity. The conclusions indicate the 

importance of choosing a data fusion method depending on the requirements for 

accuracy and adaptability of robots in the production conditions of Industry 5.0. 
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Introduction 

In today's world, where production processes are becoming increasingly 

automated, the concept of Industry 5.0 emphasizes human-robot collaboration to 

achieve a high level of integration, personalization and flexibility [1]-[16].  

Collaborative robot manipulators are central to this development, as they can 

directly interact with humans in real time to perform complex tasks [17]-[19]. 

However, to ensure effective cooperation and reliable functioning of such robots, 

accurate and prompt decision-making regarding their behavior in a dynamic 

environment is necessary. In this context, Data Fusion becomes a key tool for 

increasing the accuracy and reliability of managing collaborative manipulator robots. 

Data Fusion allows you to combine information from different sources, such as 

sensors, video cameras, lidar and other systems that provide information about the 

external environment and internal states of the robot.  
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This is critically important for decision-making, since no single sensor can 

provide complete and reliable information about all aspects of the surrounding space 

and task conditions. For example, optical sensors can provide highly accurate data 

about the location of objects, but their effectiveness decreases in poor lighting or in the 

case of partial obstacles.  

On the other hand, inertial sensors can provide information about the robot's 

movements even in difficult conditions, but on their own they are not accurate enough 

to make decisions at the micro level. Data fusion allows you to combine these sources 

to get a more accurate picture of the situation. 

In the framework of Industry 5.0, this research is of particular importance due to 

the need for adaptive and safe solutions in conditions where a robot works side by side 

with a person [20]-[22]. Making decisions based on integrated data allows you to 

significantly reduce the risks of errors in the operation of the manipulator, improve the 

accuracy and stability of task performance, and also ensure a high level of safety for 

the operator.  

Various methods and approaches can be used here [23]-[40].  

The importance of such research lies in the creation of new methods and 

algorithms capable of efficiently processing large volumes of heterogeneous data in 

real time, which will allow the robot to quickly respond to changes in the environment 

and make the right decisions. 

 

 

 

Related works 

 The use of data fusion is widely used to process data obtained from mobile 

robot sensors. Naturally, many scientific works are devoted to this technology. Let us 

look at some of these recent works. 

Nascimento, H., & et al. in [41] consider the problem ensuring co-existence and 

space sharing between human and robot. Here collision avoidance is one of the main 

strategies for interaction between them without contact. 

The authors in [42] analyze the detection process of intelligent detection robots 

for massage chairs, theoretical research is carried out from two aspects of decision-

level fusion and data-level fusion. 

The study [43] considers the problem hand gesture recognition. It is noted that 

the accuracy and reliability of hand gesture recognition are the keys to gesture-based 
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human–robot interaction tasks. To solve this problem, a method based on multimodal 

data fusion and multiscale parallel convolutional neural network is proposed in this 

paper to improve the accuracy and reliability of hand gesture recognition. 

Researchers in [44] presents a survey of simultaneous localization and mapping 

and data fusion techniques for object detection and environmental scene perception in 

unmanned aerial vehicles. 

In [45] a comprehensive study on devices/sensors and prevalent sensor fusion 

techniques developed for tackling issues like localization, estimation and navigation in 

mobile robot are presented as well in which they are organized according to relevance, 

strengths and weaknesses. 

The paper [46] focuses on data fusion, which is fundamental to one of the most 

important modules in any autonomous system: perception. There are presented various 

types of sensors, their data, and the need for fusion of the data with each other to output 

the best data for the task at hand, which in this case is autonomous navigation. 

Qi, W., and co-authors in [47] designed a multi-sensor data fusion model for 

performing interference in the presence of occlusions. A multilayer Recurrent Neural 

Network consisting of a Long Short-Term Memory module and a dropout layer is 

proposed for multiple hand gestures classification. Detected hand gestures are used to 

perform a set of human-robot collaboration tasks on a surgical robot platform. 

In the work [48] a complementary multi-modal sensor fusion approach is 

presented that improves the reliability of the pose estimation process for aerial robots 

by fusing visual-inertial and thermal-inertial odometry estimates with a LiDAR 

odometry and mapping solution. 

Thus, we see that fusion technology is widely used in modern science. Next, we 

will consider our approach to using data fusion for a robot-manipulator. 

Study of methods used for the data fusion process for collaborative robots. 

Data Fusion for collaborative robots-manipulators within Industry 5.0 is the 

process of integrating and harmonizing information from various sensors and sources 

to obtain more accurate, complete and reliable information about the state of the 

system, environment or objects. This allows robots to work more efficiently in complex 

and dynamic environments. 

For the mathematical representation of the data fusion process for collaborative 

robots different methods are used: 

- Kalman filter for linear systems; 

- Extended Kalman Filter for nonlinear systems; 
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- Bayesian estimation for probabilistic representation of uncertainty; 

- Dempster-Shafer Theory of trust for combining evidence from different 

sources. 

Within the framework of this study, we will indicate the following parameters: 

xt - the state vector of the collaborative robot (positions of the manipulator joints, 

speed); ut - control signals (commands for drives or motors); zt - data from sensors 

(cameras, lidars, inertial sensors); wt and vt - process and measurement noise (sensor 

errors); Pt|t - covariance matrix (determines uncertainty in the state); Kt - Kalman matrix 

(balance between measurement and prediction). 

Let the collaborative robot system be described by the following state and 

observation equations: 

- the state of the system can be described by the following model: 

 

xt=f(xt-1,ut)+wt (1) 

 

xt – system state vector in time t (e.g.,  positions, speeds, manipulator angles); 

f(xt-1,ut) - state transition function (describes system dynamics, robot control); 

ut  - vector of control actions (for example, signals to drives); 

wt - process noise assumed to be normal with covariance Q. 

- the observation model can be presented as follows: 

 

Zt=h(xt)+vt  (2) 

 

Zt  - vector of measurements from sensors (e.g., data from cameras, lidars, 

accelerometers); 

h(xt) - an observation function that describes how the state of a system is 

transformed into a measurement; 

vt  - measurement noise, which is also assumed to be normal with covariance R. 

In the context of collaborative manipulator robots, the covariance (Q,R) allows 

to evaluate the dependence between various sensors collecting data about the 

environment and the state of the robot itself.  

For example, if one sensor measures the tilt angle of a manipulator, and another 

measures its position in space, the covariance of these two variables can help to 

understand how related they are. If the covariance is high, it means that changes in one 

parameter are accompanied by changes in another.  
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If the covariance is low or negative, then these variables may be independent or 

moving in opposite directions. 

From a mathematical point of view, covariance is defined as the average product 

of the deviations of two variables from their average values: 

 

𝐶𝑜𝑣(𝑋, 𝑌) =
1

𝑛
∑(𝑋𝑖 − 𝜇𝑥)(𝑌𝑖 − 𝜇𝑦)

𝑛

𝑖=1

 (3) 

 

X and Y - are the variables for which the covariance is calculated, Xi and Yi are 

individual observations of these variables, µx and µy are their mean values.  

In Data Fusion research for robots, covariance helps improve decision-making 

accuracy.  

For example, when combining data from different sensors in a Kalman filter, a 

covariance matrix is used to model how errors are propagated between measurements. 

This allows the robot to adjust its actions based on the data fusion, reducing 

inaccuracies in measurements and predictions. 

For data fusion in the case of a linear system, the Kalman filter can be used. It is 

a recursive algorithm that combines current measurements with state predictions.  

It can be represented by the following expressions based on 1-2: 

- updating the predicted state: 

 

xt|t-1=f(xt-1|t-1,ut)  (4) 

 

xt|t-1 - predicted state for time t, based on the previous state  xt-1|t-1. 

- updating the predicted covariance: 

 

Pt|t-1=FtPt-1|t-1Ft
T+Qt (5) 

 

Ft - matrix of partial derivatives of the state transition function. 

- status updates based on measurements: 

 

Kt=Pt|t-1 Ht
T (HtPt-1|t-1Ht

T+R)-1  (6) 

 

xt|t=xt|t-1+Kt(zt-h(xt-1|t-1))  (7) 
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Kt - the Kalman matrix, which determines how much to trust measurements 

versus predictions. 

If the system is nonlinear, the extended Kalman filter (EKF) is used, which 

linearizes the system using derivatives: 

- linearization of the transition function: 

 

𝑭𝑡 =
𝜕𝑓(𝒙, 𝒖)

𝜕𝒙
|
�̂�𝑡−1|𝑡−1,𝒖𝑡

 (8) 

 

- linearization of the observation function: 

 

𝑯𝑡 =
𝜕ℎ(𝒙)

𝜕𝒙
|
�̂�𝑡|𝑡−1

 (9) 

 

A Bayesian approach to data fusion uses a probabilistic representation of 

uncertainty. The state of the system is modeled as a probability distribution p(xt|z1:t), 

where z1:t - all received measurements up to time t. 

- estimation of a priori probability: 

 

𝜌(𝒙𝑡|𝒛1:𝑡−1) = ∫𝜌 (𝒙𝑡|𝒙𝑡−1)𝜌(𝒙𝑡−1|𝒛1:𝑡−1)𝑑𝒙𝑡−1 (10) 

 

- update by measurements: 

 

𝜌(𝒙𝑡|𝒛1:𝑡) ∝ 𝜌(𝒛𝑡|𝒙𝑡)𝜌(𝒙𝑡|𝒛1:𝑡−1) (11) 

 

Dempster-Shafer theory, this method of data fusion allows working with 

uncertain and partially contradictory data. It generates confidence masses that represent 

the degree of support for various hypotheses about the state of the system. It can be 

represented as follows: 

 

𝑚(𝐴) =
1

1 − 𝐾
∑ 𝑚1(𝐵)𝑚2(𝐶)

𝐵∩𝐶=𝐴

 (12) 
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m(A) - the confidence level for a hypothesis A represents the confidence that the 

hypothesis is true; 

K - conflict ratio between different data sources. 

 

Table 1 shows a comparison of the main advantages and disadvantages of three 

methods of data fusion: the Kalman filter, Bayesian estimation and Dempster-Shafer 

theory in the context of application for collaborative robots-manipulators within the 

framework of Industry 5.0. 

 

 

 

Table 1: Comparison of advantages and disadvantages of using data fusion 

methods: Kalman filter, Bayesian estimation and Dempster-Shafer theory in the 

context of application for collaborative manipulator robots within Industry 5.0. 

 

Method Advantages Disadvantages 

Kalman filter 

- High accuracy in real time, 

especially in the presence of 

small Gaussian noises 

- Optimal for linear systems 

- Ease of implementation 

- Difficult to use for non-

linear systems without 

adaptation (extended or 

Unscented Kalman filter) 

- Sensitivity to incorrect 

initial conditions 

Bayesian 

estimation 

- The possibility of using 

complex a priori knowledge 

- Well suited for non-linear 

systems 

- Flexible in cases where the 

probabilities are not Gaussian 

- High computational 

complexity 

- Requires accurate 

determination of a priori 

probabilities, which can be 

difficult with limited 

information 

Dempster-Shafer 

theory 

- Can handle uncertainty and 

conflicting data 

- Does not require an exact 

setting of a priori probabilities 

- Handles incomplete data 

well 

- High computational cost for 

large sets of hypotheses 

- Difficulty in interpreting the 

results in case of a high degree 

of uncertainty or inconsistency 
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Analyzing Table 1, the following conclusions can be drawn: 

- the Kalman filter is effective for real-time problems where the system has 

Gaussian noise and linear models, which makes it particularly convenient for 

controlling the position and movement of the manipulator. However, for non-linear 

problems, it needs to be modified, which complicates the implementation; 

- Bayesian estimation provides flexibility in considering complex probabilities 

and non-linear models. This is important for complex Industry 5.0 work environments, 

but this approach requires significant computing resources and accurate a priori data; 

- the Dempster-Shafer theory is well suited for working with uncertain or 

incomplete data, which can be useful for unstable sensors or in difficult production 

conditions. However, the complexity of this method makes it difficult to apply it to 

large data sets. 

Conclusion 

During the study Data Fusion for collaborative manipulator robots within 

Industry 5.0, three main mathematical models were considered: the Kalman filter, 

Bayesian estimation and the Dempster-Shafer theory. Each of these methods has its 

strengths and limitations in solving the tasks of data integration from different sources 

to improve the accuracy, reliability and adaptability of robots in the dynamic conditions 

of modern production. The Kalman filter demonstrates efficiency in real-time problems 

for linear systems with predictable noise, making it an optimal choice for systems 

where fast decision-making based on sensory information is required. However, for 

nonlinear environments, this approach needs to be extended through the use of 

nonlinear modifications. Bayesian estimation provides flexibility and accuracy in 

complex and nonlinear environments, allowing efficient use of a priori information, 

but requires significant computational resources and accurate a priori data. The 

Dempster-Shafer theory, in turn, is useful in conditions of high uncertainty and when 

working with incomplete or contradictory data, which allows to expand the possibilities 

of managing collaborative works, but this method is characterized by complexity and 

high computational cost when processing large arrays of information. In conclusion, 

each of the considered methods has the potential to be used in Industry 5.0 depending 

on the requirements for the data fusion system, but their effectiveness depends on the 

specifics of the environment, the nature of the data, and the complexity of the tasks 

faced by manipulator robots. 
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